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Introduction

The RSA algorithm was developed at MIT (they hold a patent) in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman. And, as you may have guessed, RSA is an acronym for the last names of the inventors [11]. It is a
deterministic reversible public-key encryption algorithm that, at its core, hinges on the fact that finding the prime
factorization of large numbers (say 100 to 200 digits) is hard. More specifically, determining the integer factorization
of a large number is an hard problem, and that therefore the “cracking” of the encryption is inherently hard.

Because RSA is a reversible public-key encryption algorithm, it can be used for authentication purposes. Anyone
can identify herself simply by encrypting something with her secret key that anyone else can then decrypt with that
same person’s public key. Hence RSA is used frequently today with the internet and its need for authentication
operations. A simple example is secure-sockets-layer (SSL) which uses RSA for authentication of the two users,
from which point it uses symetric keys to encrypt any remaining information that is exchanged. This is due to that
fact that encrypting with symmetric keys can be more efficient than RSA.

Mathematical Tools

The RSA algorithm relies on a couple of mathematical properties in Number Theory, which are described below.

Definition 1 Two positive integers a and b are relatively prime (or coprime) if their greatest common divisor
is equal to one.

So saying that two numbers are coprime is also akin to saying that they have no common proper divisors. This
may raise the question of just how many integers are less than and coprime to a given integer. Well Euler, like in
many other cases, came up with a solution to this problem.

Definition 2 Euler’s totient function (or Euler’s phi function) is the function ϕ defined for some non-zero
natural number n and prime p as

ϕ(n) = n
∏
p|n

(
1− 1

p

)
which gives the total number of integers from 1 to n that are relatively prime to n.

Thus for a prime integer p the number of integers from 1 to p that are relatively prime to p is ϕ(p) = p(1− 1
p ) = p−1,

which is a slightly intuitive result since p has no proper divisors and that the only common divisor that p and any
number less than p can have is one. Thereby making the greatest common divisor 1. Therefore all non-zero integers
less than p are relatively prime to p. In the same manner we can see that for any two prime numbers p and q the
following is true.

ϕ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= (p− 1)(q − 1) (1)

Again this is slightly intuitive and is a result that the RSA algorithm makes use of when generating public and
private keys. A more general result is that if m and n are relatively prime, then ϕ(mn) = ϕ(m)ϕ(n), which is
also a nice result and implies that one can break down the totient of a given number, say r, into the product of
the totient of each prime number that divides r, raised to the quotient of both r and that prime number. A good
exercise would be to confirm this property. (hint: What are the proper divisors of mn?)

The RSA algorithm also makes use of some simple modular arithmetic. As such, a blip about the additive and
multiplicative properties of integers modulo and number n and a slightly more in-depth talk about modular inverses
is necessary.

Theorem 1 ([2]) Additivity and Multiplicity of the integers modulo some number n hold for all integers. That is
to say, for two integers a and b, the following two properties are true in modulo n.

(i). Additivity: (a mod n) + (b mod n) = (a+ b) mod n

(ii). Mutiplicativity: (a mod n)(b mod n) = ab mod n

Basically, addition and multiplication as we know them, also reside in the world of modulo n. Further extensions
include summations, products, and powers. Roughly the same is true for multiplicative inverses with modulo n.
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Definition 3 The modular inverse of a non-zero integer a modulo n is another integer x such that the following
statement holds.

ax ≡ 1 mod n

Furthermore, the multiplicative inverse of an integer a modulo n exists if and only if a and n are relatively prime.

This is also equivalent to saying that the remainder of dividing the product ax by n results in a remainder of 1,
which implies that n | ax − 1. This in turn gives us the equation ax − 1 = ny for some integer y, or equivalently
we get the Diophantine equation, ax + ny = 1, since y is arbitrary and can easily “absorb” the negation of ny.
However, how do we even know that such integers exist?

Theorem 2 (Bézout’s Identity [1]) For all non-zero integers a and b there exist integers x and y such that

ax+ by = gcd(a, b)

and more commonly than not, either x or y is negative.

But, is this what we want? Well, remember that with x being the modular inverse of a mod n, a and n are relatively
prime, which gives us what we need, namely ax+ny = 1 = gcd(a, n). However, the problem of finding these values
now arises.

Being that the readers of this paper most probably posses a background in computer science or the like, a general
understanding of the Euclidean Algorithm is assumed. However, an algorithm that is less known is the extended
Euclidean Algorithm.

Theorem 3 For all non-zero integers a and b, the extended Euclidean algorithm determines two integers x and y
that solve the following Diophantine equation.

ax+ by = gcd(a, b)

There are multiple ways in which the extended Euclidean algorithm can be implemented including but not limited
to both iterative and recursive methods [3]. In the implementation of the RSA algorithm completed for this project
(see below), the recursive method was used. Hence, that will be described. When attempting to find the greatest
common divisor of two numbers a and b with arbitrarily assuming a > b, we must notice that (via the Euclidean
algorithm) if a does not divide b, then we have that gcd(a, b) = gcd(b, a mod b). As a result, we also have that if a
does not divide b, then for some x and y

ax+ by = bx+ (a mod b)y (2)

which begins to look like something we could use, and indeed, such is the case, but how so? If we fiddle around
with the right-hand side of equation 2 we can obtain the following sequence of equations.

bx+ (a mod b)y = bx+
(
a−

⌊a
b

⌋
b
)
y

= bx+ ay −
⌊a
b

⌋
by

= ay + b
(
x−

⌊a
b

⌋
y
)

This gives to us the recursive step for our algorithm that we desire, since we can solve for the solution to the
equation ax+ by = gcd(a, b) by solving for a solution to the equation bx+ (a mod b)y = gcd(b, (a mod b)), thereby
decreasing the starting values. More specifically, the solution to ax+ by = gcd(a, b) is

x = y′, y = x′ − y′
(⌊a
b

⌋)
where x′ and y′ is the solution to bx′ + (a mod b)y′ = gcd(b, a mod b). We will stop in the trivial case (our base
case) when b divides a (i.e. b is the greatest common divisor of a and b), which yields a(0) + b(1) = gcd(a, b). Hence
our recursive algorithm is as follows.
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Algorithm: Extended Euclidean

Input: Two non-zero integers a and b
Output: A tuple of integers, (x, y) such that ax+ by = gcd(a, b) is satisfied

if b | a
return (0,1)

else
(x, y) = extendedEuclidean(b, a mod b)
return (y, x− y

(⌊
a
b

⌋)
)

There is one last item that must be mentioned before the mathematical background for the RSA algorithm is
complete, and that is the Chinese Remainder Theorem.

Theorem 4 (Chinese Remainder Theorem [6, 15]) For any set of non-zero positive integers z1, z2, . . . , zk that
are pair-wise relatively prime, there exists an x for all sets of integers a1, a2, . . . , ak such that the following holds.

x ≡ a1 mod z1
x ≡ a2 mod z2

...
x ≡ ak mod zk

Futhermore, for b1, b2, . . . , bk such that

bi
Z

zi
≡ 1 mod zi

where Z = z1z2 · · · zk then the following is true.

x ≡ (a1b1
Z

z1
+ a2b2

Z

z2
+ · · ·+ akbk

Z

zk
) mod Z

Note that while the RSA algorithm does not use the Chinese Remainder Theorem directly, knowledge of this
fact can give one the ability to launch an attack on a system using the RSA algorithm as we will see in the discussion
on RSA vulnerabilities.

The RSA Algorithm

The RSA algorithm consists of three main parts which are (1) generating the public and private keys, (2) encryption
of plain-text into ciphertext, and decryption of ciphertext into plain-text. Remember that it is because of the the
difficulty of factoring large integers which provides RSA encryption with its “strength”.

Key Generation

The key generation scheme results in the creation of both the public and private keys, of which both are in the
form of a tuple of integers,

(n, e)

in which n is called the modulus and e is called the exponent. The method to generate the two keys is as follows.

1. Choose two prime numbers p and q with p 6= q.

2. Compute the value n such that n = pq.

3. Compute the totient of n. That is, compute ϕ(n), the number of positive integers less than and relatively
prime to n.

4. Choose a non-zero natural number e that is less than n and relatively prime to ϕ(n).
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5. Compute a number d such that ed ≡ 1 mod n, that is, compute the modular inverse of e modulo ϕ(n).

The RSA key generation method produces, from p and q, three new values, which are n, e, and d. These three
new values are what make up the public and private keys of the RSA encryption scheme. The public key is the
tuple (n, e) and the private key is the tuple (n, d). Keep in mind that not only does the value of d have to be kept
secret, but also the values of p and q since knowing p and q along with knowing the public key provides one with
the ability to compute the private key. These keys each can be used for decrypting a ciphertext that the opposite
key has encrypted, hence the ability of RSA to be used as a signing mechanism.

For some of the steps in the generation of the RSA public and private keys there a few things that one needs to
keep in mind when making choices during the process.

Choosing Prime Numbers: The prime numbers p and q should be choosen based on the fact that the larger the
two numbers the more secure the algorithm/encryption is, but choosing large prime numbers comes with the price
of less efficient encryption and decryption. Obviously, there is a delicate balance that needs to be found between
the need for security at the cost for efficiency. See the later section on RSA vulnerabilities that mentions additional
caveats about choosing p and q.

Computing the Totient of n: When computing the totient of n, rather than using the formula described in
the definition of the totient function (Definition 2), the known property expressed in Equation 1 should be put to
use, since we know that n = pq. Doing so will be more efficient since a general function that computes the totient
of a number will most likely attempt to find all of the prime factors of n, which is more complex than necessary for
our needs during the key generation process. When p and q are large, computing the totient of n with a general
totient function is essentially trying to break the encryption of RSA.

Choosing e: It is common practice to choose a value for e that is prime, which is always garenteed to be relatively
prime to n. Even more so, it is common to choose 3, 17, or 65537 to be the value of e. See the section on RSA
vulnerabilities for possible weakening of security by choosing a value of e that is small.

Encryption and Decryption

The encryption and decryption methods of the RSA algorithm are functionally identical. The difference is that
encryption takes plain-text as input and outputs the corresponding ciphertext, whereas decryption takes ciphertext
as input and outputs the corresponding plain-text. Figure 1 depicts the way in which the encryption and decryption
methods are virtually the same.

Figure 1: A depiction of the dual nature of the encryption and decryption of the RSA algorithm. The I represents the input plain-text
or ciphertext and the O represents the corresponding output ciphertext or plain-text, depending on whether encryption or decryption
is being performed.

In the above firgure, it is purposely not specified which key should be used for encryption or decryption. This
is, as mentioned briefly earlier, because both the public and private keys can be used to encrypt plain-text into
ciphertext and to decrypt ciphertext into text. This is why RSA can be used for signing and authentication. For
instance, if Alice wants to authenticate herself to Bob, she simply encrypts some text or phrase using her secret key
and sends the resulting ciphertext to Bob who can decrypt the ciphertext into the plain-text using Alice’s public
key. This authentication method is, of course, contingent upon the belief that Alice’s private key has not been
compromised. Nevertheless, disregarding any (hopefully small) chance that private keys are compromised, Bob and
Alice can perform the analogous task of verifying Bob to Alice, thereby completing the authentication of each other
to one another.
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The Nitty-Gritty: Moving away from abstraction and towards the details, the encryption and decryption meth-
ods use simple modular arithmetic for computing their respective values from their respective inputs. However, the
idea of a padding scheme must first be mentioned.

Basically, a padding scheme is a method for taking a string and creating a sequence of integers (or bits) less than
a certain value [11]. RSA encryption/decryption demands a padding scheme that takes a message and transforms
it such that the sequence of integers produced are non-zero and less than n = pq (or equivalently transforms it into
an number of bits that are less than the size of n in bits). Furthermore, it demands that this transformation be
known to both the sender and receiver of the message/ciphertext and also that the transformation is reversible,
by which we mean a bijection. This is, of course, so that the reciever can “unpad” the number resulting from the
decryption of the ciphertext. Note that, from here on out, we will speak of the text and ciphertext without mention
of padding with the understanding that there is always some sort of inherent padding scheme. The aim here is for
the clarity of the reader.

As was mentioned earlier, the encryption and decryption methods use simple modular arithmetic. Lets say that
Alice would like to send a message m to Bob. Using Bob’s public key, (n, e), Alice performs the encryption of m
by creating the ciphertext c via the following calculation.

c = me mod n (3)

Now that Alice made the ciphertext, she ships it off to Bob for decryption and reading. When Bob recieves the
ciphertext from Alice he decrypts c into m via peforming the following computation using his private key (n, d).

m = cd mod n (4)

But Why? What is the reason that this encryption and decryption process returns the correct result? By making
use of Theorem 1 and a result from number theory that states that if n is prime or a product of two distinct primes,
then we have that for all integers x, xy mod n = xy mod ϕ(n) mod n where ϕ is Euler’s totient function [6], we can
obtain the the reason why RSA encryption works. Assuming Equations 3 and 4 hold, we have the following sequence
of equations.

m = cd mod n
= (me mod n)d

= med mod n
= med mod ϕ(n) mod n
= m mod n
= m

Notice that the simplification from line 4 to line 5 above is posible because we chose e and d such that ed ≡
1 mod ϕ(n) which means that the remainder when dividing ed by ϕ(n) is 1, that is, ed mod ϕ(n) = 1. The
simplification from line 5 to line 6 is a result of the demand that m is less than n. Without this property RSA
would not work, which is why we needed to demand that encyption only use integers that are less than n.

Note that any uses of p, q, n, e, m, and c beyond this point are taken to be defined as they are in the descriptions
above of the key generation, encryption, and decryption methods of the RSA algorithm.

Vulnerabilities of the RSA Algorithm

While RSA does seem like a rather strong method for encryption and decryption, it unfortunately has some weak-
nesses. Most vulnerabilies have easy fixes, but some could prove to be a problem in the future (i.e. the abilities of
Quantum Computers... ooooh, aaaah).

Note that here we discuss the problems strictly inherent to RSA encryption and leave out the vulnerabilities
that, while should be accounted for when using RSA encryption and are of some conern, are, however, generic by
nature to all public-private key methods (i.e. man-in-the-middle attacks, private keys being compromised,...).

Choosing p and q Wisely

Two people using identical primes for n: It at first doesn’t seem all that bad as long as they are not both
the same, however if there is someone with keys generated using p and q (call this person the attacker) and another
person that generated keys using at least one of either p or q, then the attacker has a method for factoring the
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other person’s n (which of course is publicly known). Hence if the attacker begins finding remainders of division
by p and q of n in public key after public key, stumbling across someone who used the same p or q for her value
of n will result in a remainder of zero. This gives the attacker the prime factorization of n in that person’s RSA
encryption system.

So how can this be avoided? Well, in all practicality, it does not need to be avoided as much as it simply has
a low probability of happening. Sure it can happen in theory, but it most likely will not. This is because of the
prime number theorem, conjectured in 1791 by Gauss and proved by Hadamard and de la Vallée Poussin in 1896
[13, p. 124].

Theorem 5 (Prime Number Theorem [13]) Given a large enough N , the function π defined as

π(N) ≈ N

lnN

returns the number of prime numbers less than N .

Because π(N) ≈ N
ln N is the number of primes less than N and we have that

lim
N→∞

N

lnN
=∞

then we can see that for significantly large N there are plenty of primes from which to choose. Furthermore, because
of the Prime Number Theorem, we have that the probability of two people choosing the same prime number in the
range of all primes from 2 to N is ln N

N . This probability for, say an eleven digit decimal number (i.e. at least 1010)
is

ln 1010

1010
≈ 2.30× 10−9

which when knowing that current RSA techniques use on the order of 300 digit numbers renders the probability of
two people choosing the same prime to be virtually unimaginable [16, p. 176].

Choosing p and q Too Close Together [4]: The Fermat Method is a method of factorization based on the
fact that an odd integer can be represented as the difference of squares of two integers. Moreover, if the number n
to be factored by the Fermat Method is such that n = cd then n can be factored quickly if either c or d is within
4
√

4n of
√
n, actually within one step. Thus the primes p and q should be chosen such that their difference is not

too small. Namely, if either p or q is within 4
√

4n of
√
n then the Fermat Factorization Method has the ability to

break the RSA encryption in one step of its algorithm.

Choosing a Small Value for e

Smaller Roots for m: Because of the method of encryption that RSA employs (Equation 3) if m is less than
e
√
n then me < n which implies that me mod n = me. Hence, an attacker can take the eth root of the encrypted

message (seeing as e is part of the public key) and will automatically have the original message. Taking the eth

root of a number for small values of e is trivial.

A Single Message Encrypted e Times [6]: Another problem that arises when using a small value of e would be
the problem of the situation that occurs when a single message m is encrypted by at least e people, say with public
keys (n1, e), (n2, e), . . . , (ne, e) where n1, n2, . . . , ne are pair-wise relatively prime, is more likely to occur. Attackers
can then derive, via the Chinese Remainder Theorem (Theorem 4), the value of me mod n1n2 · · ·ne as demanded
by the RSA key generation method. Also, since an attacker would know that m < ni for all i ∈ {1, . . . , e}, then
she also knows that m3 < n1n2 · · ·ne which means simply that me mod n1n2 · · ·ne = me. Therefore finding the
message m can be accomplished by taking the eth root. Hence, for small values of e finding m is simple.

Choosing an e large enough (but not so large as to decrease encryption/decryption efficiency), can side-step the
above problems with small values of e. It is suggested that a value of e of 65537 should be used due to the striking
of a nice balance between the magnitude of e and the efficiency of the encryption and decryption process using such
an e [6].
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Deterministic Nature of RSA

Because the RSA algorithm is deterministic, attackers can use what is called a plain-text attack to try to determine
the private key of someone. A plain-text attack can be performed by encrypting likely plain texts, “Hello World”
for instance, with multiple different keys and comparing them to ciphertexts that are obtained one way or another.
If the two ciphertexts turn out to be the same, the attacker then knows the key that was used to encrypt the text
since the attacker knows the original text. To safeguard against this weakness, the employment of a good padding
scheme is necessary, preferably one that utilizes the power of randomness in order to counter-act the deterministic
nature of the RSA encryption.

Authentication Backfire: A Sneaky Attacker uses Modular Mutiplicativity [16]

Given the multiplicative property of modular arithmetic (Theorem 1) two messages, m1 and m2, upon encryption
have the property that

(me
1 mod n)(me

2 mod n) = (m1m2)e mod n

meaning that the product of two messages encrypted with the same key is identical to the encryption of the
product of those two messages. Hence if an attacker Eve has a ciphertext encrypted via Alice’s public key (n, e),
c = me mod n, where m is say a session key that someone is sending to Alice for a symmetric encryption scheme,
then Eve can now choose an r that is less than and relatively prime to n with which she can produce a new
innocent-looking message y = (c)(re mod n) = cre mod n using Alice’s public key (n, e). Eve then asks Alice to
verify herself by decrypting y. Alice uses herown private key, (n, d) to do so and sends the result back to Eve. Eve
knows how the decrypting process works and thereby knows that she is recieving from Alice yd = cdred mod n.
Because Eve knows the following two facts,

red = r mod n and m = cd mod n

given by the facts that r and n are relatively prime, ed ≡ 1 mod ϕ(n), and Equation 3, then Eve also knows
yd = cdred mod n = mr mod n. This information gives to Eve the knowledge of the remainder of dividing mr by
n, from which she can use the Extended Euclidean Algorithm to compute m.

Quantum Power

Remembering that the strength of the security of the RSA encryption relies on the inability of some computers
to factor large integers. It is the current belief of the majority of the computer science community that while
Integer Factorization is in NP, it is not in P. This of course also implies the underlying belief that NP6=P. However,
in 1994 Peter Shor discovered a way of using quantum mathematics and more specifically the Quantum Fourier
Transform to solve the integer factorization problem (and, as point of interest, Shor was also able to solve the
“discrete logarithm” around the same time) [9, p. 6]. Figure 2 depicts the location of integer factorization in the
current system of beliefs about the arrangement of complexity classes, where Bounded error, Quantum Polynomial
time (BQP) is the set of problems solvable in polynomial time via the use of quantum computers.

Figure 2: The leading belief of the complexity classes in PSPACE. More specifically, the belief of the location of integer factorization
as being in NP and in BQP, but not in P.
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This makes for great concern about the use of the RSA algorithm, since quantum computers will be able to
crack an RSA scheme in a polynomial amount of time. This is even more so since, in 2001, IBM researchers were
able to build a quantum computer and put Shor’s algorithm to use. However, you may be relieved to know that
the maximum number that they were able to factor was 15. No, NOT a 15 digit number, but 15, 3(5). Hence we
still have at least a few years of quality research to go before quantum computers threaten the livelihood of our
modern security infrastructure that is RSA.

Implementation

The Main module here is a shell for accessing the modules used for RSA key generation, encryption and decryption.
There are different compilers/interpreters for Haskell. I prefer the Glasgow Haskell Compiler (GHC), and will discuss
the building of the program from the usage of such a compiler. GHC is freely available online (www.haskell.org)
for Windows, Linux, Mac (all three of which are fully supported) and also Solaris (which is community supported).
Haskell was the language chosen for implementation of the RSA algorithm because of the arbitrary-precision Integer
type which has no problems with handling extremely large numbers.

The building of the Main module (i.e. Crypt.lhs) requires the following modules:

• Encryption.lhs

• FractionalInteger.lhs

• ModularArithmetic.lhs

• Prime.lhs

• RSA.lhs

Once Crypt.lhs and all of the above files are in the same directory (or in another if the -i option for ghc is specified),
then creation of the executable can be completed by executing the following command:

ghc --make Crypt -o desired executable name

which will produce a binary file with the name “desired executable name”.
In order to run the program simply make the following call.

desired executable name -rsa

-- FILE: Crypt.lhs
-- DATE CREATED: May 6, 2009
-- LAST UPDATED: May 11, 2009
-- AUTHOR: Lawrence Tyler Rush
-- me@tylerlogic.com
-- www.tylerlogic.com
-- VERSION: 1.0.0
module Main ( main ) where

Imports of the Main Module

The Data.Char module is imported to use its digitToInt() function to perform the transformation from the string
representation of an integer to its corresponding integer value that occurs in the stringToInteger() function of
this module.

import Data.Char ( digitToInt )

The RSA module is imported for the obvious reasons of being able to generate keys, encryption of text, and decryption
of ciphertext all by using the RSA algorithm.

import RSA ( rsaDecrypt , rsaEncrypt , rsaKeyGenerator )

The System module is imported so that the command-line arguments for the program can be obtained through use
of the module’s getArgs() function.

import System ( getArgs )
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Exported Functions of the Main Module

The main() function simply asks the user for two prime numbers from which RSA public and private keys will be
generated. The user will then be asked for a message to encrypt, and encryption will take place along with the
subsequent decryption back into the original text. In order to not take too much time (due to current implementation
inefficiencies of RSA module 1.0.0) prime numbers below about 500 may be a good idea to test and not have to
wait forever, like 487 and 397. Order of entry of the p and q matters not. Also note that as of version 1.0.0 of
the RSA module, the padding scheme to convert from a string to an integer is to take the integer ASCII value of
each character and perform the RSA encryption on each such integer value. Thus p and q should be chosen (for
RSA module versions less than 1.0.0) such that n is greater than the highest ASCII integer value of 127. Likewise
p and q should be choosen such that n > 65537 since the RSA module of version 1.0.0 or earlier employs a value of
e = 65537. Playing around with the program, as in entering composite numbers for p and q obtains wacky results.
Trying for example using 350 and 400 to encrypt

This is a trial of not using primes

results in the jibberish that follows.

Hence choose prime numbers. A similar situation occurs when selecting some values of p and q such that n < 65537.

main :: IO ()
main = do

args <- getArgs
parseArgs args
-- Get the two prime numbers
putStrLn "Enter the first prime number."
pString <- getLine
putStrLn "Enter the second prime number."
qString <- getLine
-- Convert the strings to actual numbers and compute the RSA keys
let p = stringToInteger pString
let q = stringToInteger qString
let keys = rsaKeyGenerator p q
putStrLn $ "Your public key: " ++ (show.fst) keys ++ "\n" ++

"Your private key: " ++ (show.snd) keys ++ "\n" ++
"Press enter to continue..."

nothing <- getLine
putStrLn "\nEnter the phrase that you would like to encrypt."
plainText <- getLine
putStrLn $ "\nThe following phrase will be encrypted: " ++

"\"" ++ plainText ++ "\"" ++ "\n" ++
"Press enter to continue..."

nothing <- getLine
-- Encrypt the plain text and show it
putStrLn "Encryption Ciphertext: "
let encryption = rsaEncrypt (fst keys) plainText
putStrLn $ show encryption ++ "\n" ++

"Press enter key to decrypt..."
nothing <- getLine
-- Decrypt the ciphertext and show it
putStrLn "Decrypting..."
let decryption = rsaDecrypt (snd keys) encryption
putStrLn (decryption ++ "\n")
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Non-Exported Functions of the Main Module

The rsaOpt() function simply provides the string that is used as the option in the command-line arguments to
indicate that RSA encryption is to be used.

rsaOpt :: String
rsaOpt = "-rsa"

The parseArgs() function takes in the command-line arguments and determines whether or not there are any
errors, causing error messages to be displayed if the command-line syntax is incorrect.

parseArgs :: [String] -> IO()
parseArgs args

| length args /= 1 = error "ERROR: Incorrect number of arguments."
| (args !! 0) == rsaOpt = putStr ""
| otherwise = error "ERROR: Unrecognized arguments."

The stringToInteger() function takes a string representation of an integer (i.e. from a command line text) and
converts it to the corresponding value in the Haskell Integer type.

stringToInteger :: String -> Integer
stringToInteger str = thisRecurse str 0

where thisRecurse str num
| str == [] = num
| otherwise = thisRecurse t (nextNum*(10^(length str - 1)) + num)
where nextNum = (toInteger.digitToInt.head) str

t = tail str

MODULE: ModularArithmetic

The ModularArithmetic module provides functionality for common modular arithmetic, which, at this point,
minimally contains the divides() function.

-- FILE: ModularArithmetic.lhs
-- DATE CREATED: May 4, 2009
-- LAST UPDATED: May 8, 2009
-- AUTHOR: Lawrence Tyler Rush
-- me@tylerlogic.com
-- www.tylerlogic.com
-- VERSION: 1.0.0
module ModularArithmetic ( divides ) where

Exported Functions of the ModularArithmetic Module

The divides() function indicates whether a specified integer divides another via testing if the modulo is equal to
zero.

divides :: Integer -> Integer -> Bool
divides n = ( (== 0) . (mod n) )

MODULE: FractionalInteger

The FractionalInteger module provides the ability to represent a rational number using arbitrary precision
through the use of the Haskell Integer type.

-- FILE: FractionalInteger.lhs
-- DATE CREATED: May 4, 2009
-- LAST UPDATED: May 8, 2009
-- AUTHOR: Lawrence Tyler Rush
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-- me@tylerlogic.com
-- www.tylerlogic.com
-- VERSION: 1.0.0
module FractionalInteger
( FractionalInteger,
denom,
nume,
toFractionalInteger,
toIntegerFromFractionalInteger )

where

Imports of the FractionalInteger Module

This module uses the divides() function of the ModularArithmetic module in determining the equivalence of two
FractionalIntegers.

import ModularArithmetic ( divides )

This module needs the Ratio module in order to instantiate the Rational class for the FractionalInteger abstract
data type and functions that correlate to the Rational class.

import Ratio ( Rational , denominator , numerator )

Abstract Data Types of the FractionalInteger Module

This module implements a fraction version of the Integer type via the FractionalInteger abstract data type
which represents the fraction version of a Integer via a tuple of two Integer types. Notice that this representation
is the reason that a FractionalInteger can only represent rational numbers.

data FractionalInteger = FI (Integer,Integer)

Class Instantiations of the FractionalInteger Module

The Eq class instantiation determines the equality of two FractionalIntegers via determining the equivalence of
the numerator and denominator of each of the two FractionalIntegers.

instance Eq FractionalInteger where
( FI (a,b) ) == ( FI (c,d) )

| divides b d = a == (quot b d)*c
| divides d b = c == (quot d b)*a
| otherwise = False

This module instantiates the Fractional class by defining the division, reciprical, and fromRational functions in
the obvious way.

instance Fractional FractionalInteger where
(/) ( FI (a,b) ) ( FI (c,d) ) = simplify ( FI (a*d,b*c) )
recip ( FI (a,b) ) = simplify ( FI (b,a) )
fromRational rat = FI (numerator rat,denominator rat)

This module instantiates the Num class by defining the addition, subtraction, multiplication, negation, fromInteger,
abs, and signum functions in the obvious way.

instance Num FractionalInteger where
(+) ( FI (a,b) ) ( FI (c,d) ) = simplify ( FI (a*d+b*c,b*d) )
(*) ( FI (a,b) ) ( FI (c,d) ) = simplify ( FI (a*c,b*d) )
negate ( FI (a,b) ) = FI (-a,b)
(-) one two = (+) one (negate two)
fromInteger a = FI (a,1)
abs ( FI (a,b) ) = FI (abs a,abs b)
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signum ( FI (a,b) )
| b == 0 = error "ERROR: Division by zero!!"
| a == 0 = 0
| (a < 0 && b < 0) || (a > 0 && b > 0) = 1
| (a < 0 && b > 0) || (a > 0 && b < 0) = -1

This module instantiates the Show class by using the show function on the numerator and denominator of the
FractionalInteger.

instance Show FractionalInteger where
show ( FI (q,r) ) = (show q) ++ " / " ++ (show r)

Exported Functions of the FractionalInteger Module

The denom() function gets the denominator of the FractionalInteger.

denom :: FractionalInteger -> Integer
denom ( FI (q,r) ) = r

The nume() function gets the numerator of the FractionalInteger.

nume :: FractionalInteger -> Integer
nume ( FI (q,r) ) = q

The toFractionalInteger() function converts two integers (one for each of the numerator and denominator) to
a FractionalInteger. This function causes an error if a FractionalInteger is attempted to be created using a
0 as the denominator, which of course is undefined in mathematics.

toFractionalInteger :: Integer -> Integer -> FractionalInteger
toFractionalInteger q r

| r == 0 = error err_TO_FRACTIONAL_INTEGER_DIVISION_BY_ZERO
| otherwise = simplify ( FI (q,r) )

err_TO_FRACTIONAL_INTEGER_DIVISION_BY_ZERO = "ERROR: (FractionalInteger." ++
"toFractionalInteger) Cannot create a " ++
"FractionalInteger where a denominator " ++
"of zero. Division by zero is undefined."

The toIntegerFromFractionalInteger() function converts a FractionalInteger to a normal Integer, but only,
as expected, if the denominator of the fraction is one. This function causes an error when the denominator of the
FractionalInteger is not equal to 1.

toIntegerFromFractionalInteger :: FractionalInteger -> Integer
toIntegerFromFractionalInteger ( FI (q,r) )

| denom simple == 1 = nume simple
| otherwise = error err_TO_INTEGER_FROM_FRACTIONAL_INTEGER
where simple = simplify ( FI (q,r) )

err_TO_INTEGER_FROM_FRACTIONAL_INTEGER = "ERROR: (FractionalInteger." ++
"toIntegerFromFractionalInteger) The " ++
"denominator of a FractionalInteger must " ++
"be 1 in order to convert to Integer."

Non-Exported Functions of the FractionalInteger Module

The simplify() function performs the normal operation of simplifying the FractionalInteger just as happens
with any normal fraction. Note that no functions outside of this module should need this function since all currently
exported functionality incorporates the simplification when needed, and any future modifications *should* do the
same.

simplify :: FractionalInteger -> FractionalInteger
simplify ( FI (a,b) )

| gcdAB /= 1 = simplify ( FI (quot a gcdAB,quot b gcdAB) )
| otherwise = FI (a,b)
where gcdAB = gcd a b
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MODULE: Prime

The Prime module houses multiple functions that have to do with primes in some way. Some of the more common
functions are functions that determine all the divisors of a number, the proper divisors of a number, and the prime
factorization of a number. Other functions include Euler’s totient function and a function that produces a list of
all primes via a method called “Prime Wheels”

-- FILE: Prime.lhs
-- DATE CREATED: April 29, 2009
-- LAST UPDATED: May 8, 2009
-- AUTHOR: Lawrence Tyler Rush
-- me@tylerlogic.com
-- www.tylerlogic.com
-- VERSION: 1.0.0
module Prime
( divisors,
prime,
primeFactorization,
primeFactorizationToInteger,
primeFactors,
primes,
properDivisors,
totient )

where

Imports of the Prime Module

This module imports the FractionalInteger module in order to perform division of the Haskell Integer type.
This functionality is used mainly in the totient function.

import FractionalInteger ( toIntegerFromFractionalInteger )

Some of the functions in this module need to know whether or not a particular number is a divisor of another.
Hence the importing of the ModularArithmetic module.

import ModularArithmetic ( divides )

Exported Functions of the Prime Module

The divisors() function determines every divisor of a specified number returning the divisors in a list in increasing
order.

divisors :: Integer -> [Integer]
divisors n = 1:(properDivisors n) ++ [n]

The prime() function indicates whether or not a specified integer is prime. This is done simply by making sure
that the given integer has no proper divisors.

prime :: Integer -> Bool'
prime n'

| n <= 1 = False
| n == 2 = True
| even n = False'
| otherwise = (length.properDivisors) n == 0

The primeFactorization() function determines the prime factorization of a given integer, returning the prime
factorization as a list of tuples in which the first element of each tuple is a prime divisor of the integer, and the
second element is the quotient resulting from the division of the given integer by the prime divisor. That is, each
tuple (p, k) is such that p is a prime number and k is the largest integer such that pk divides the integer passed to
this function.
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primeFactorization :: Integer -> [(Integer,Integer)]
primeFactorization n = thisRecurse n primes []

where thisRecurse n primesRemain currList
| n == 1 = reverse currList
| divides n h = thisRecurse (quot n subProduct) t (newFactor:currList)
| otherwise = thisRecurse n t currList
where h = head primesRemain

t = tail primesRemain
subProduct = h^(snd newFactor)
newFactor = (h,numberOfDivisions h n)

The primeFactorizationToInteger() function computes the product of a prime factorization, resulting in the
unique intger represented by the specified prime factorization.

primeFactorizationToInteger :: [(Integer,Integer)] -> Integer
primeFactorizationToInteger [] = 1
primeFactorizationToInteger (x:xs) = ((fst x)^(snd x))*(primeFactorizationToInteger xs)

The primeFactors() function determines all of the prime numbers that divide a specified integer, returning these
numbers in a list.

primeFactors :: Integer -> [Integer]
primeFactors n = thisRecurse n primes []

where thisRecurse n primesRemain currList
| n == 1 = reverse currList
| divides n h = thisRecurse (quot n subProduct) t (h:currList)
| otherwise = thisRecurse n t currList
where h = head primesRemain

t = tail primesRemain
subProduct = h^(numberOfDivisions h n)

The primes() function [10] creates a list of every prime number, through the use of Haskell’s functionality for infinite
lists of course. Other algorithms such as only listing odds after two as possible candidates for primes work, but this
is still much slower that the one implemented here since this implementation looks at fewer possible candidates for
actual primes. The algorithm, called “Prime Wheels” by some, uses the fact that every prime number p has either
the form

6k + 1 or 6k + 5

for all non-zero natural numbers k. This fact makes for quicker formation of all primes simply by only considering
numbers of this form.

primes :: [Integer]
primes = 2:3:primes’

where
1:p:candidates = [ 6*k+r | k <- [0..], r <- [1,5] ]
primes’ = p : filter isPrime candidates
isPrime n = all (not . divides n) (takeWhile (\p -> p*p <= n) primes’)'

The properDivisors() function determines every proper divisor of a specified number, returning said divisors in
a list.

properDivisors :: Integer -> [Integer]
properDivisors n = thisWithCutoff n 2

where thisWithCutoff n start
| start*start > n = []
| divides n start = (start:(thisWithCutoff n start’)) ++ [quotient]
| otherwise = thisWithCutoff n start’
where quotient = quot n start

start’ = start + 1
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The totient() function computes the value of the Euler’s Totient (phi) function for any integer n > 1, also known
as ϕ(n). This number directly returns the number of intgers that are relatively prime to n.

totient :: Integer -> Integer
totient n = toIntegerFromFractionalInteger ((fromInteger n) * theProduct)

where one = fromInteger 1
theProduct = product [ one - (one / (fromInteger p)) | p <- (primeFactors n)]

Non-Exported Functions of the Prime Module

The numberOfDivisions() function, for inputs b and x, determines the largest integer n such that bn < x. That is,
the number of times b divides x. It may be asked why is the function not simply taking the floor of the logarithm of
x with the appropriate base? Such a computation would be ideal, however the function log() in Haskell requires
a floating point as input, which makes it hard to somehow use such a function when the input should be an type
that has arbitrary precision like that of the Integer type in Haskell.

numberOfDivisions :: Integer -> Integer -> Integer
numberOfDivisions base x

| divides x base = 1 + numberOfDivisions base (quot x base)
| otherwise = 0

MODULE: Encryption

The Encryption module provides functions that are used by some encryption algorithms, in particular RSA.
Currently, only functionality for the RSA algorithm is implemented, but future modifications may include providing
functionality needed by multiple other encryption algorithms. It provides functions for determining the modular
inverse of an integer modulo some other integer via the solving for x and y in the Diophantine Equation ax+ by =
gcd(a, b). Such a function is the extended Euclidean algorithm.

-- FILE: Encryption.lhs
-- DATE CREATED: May 4, 2009
-- LAST UPDATED: May 8, 2009
-- AUTHOR: Lawrence Tyler Rush
-- me@tylerlogic.com
-- www.tylerlogic.com
-- VERSION: 1.0.0
module Encryption
( extendedGcd,
extendedGcdA,
extendedGcdB )

where

Imports of the Encryption Module

This module imports the FractionalInteger in order to perform certain division of Haskell’s Integer type. This
can be done since it is known that all of the operations deal with rational numbers.

import FractionalInteger ( toIntegerFromFractionalInteger )

This module imports the ModularArithmetic simply to use its divide function in the extended Euclidean algorithm.

import ModularArithmetic ( divides )

Exported Functions of the Encryption Module

The extendedGcd() function [3] computes a solution to the equation

ax+ by = gcd(a, b)

given non-zero intgers a and b. This is done through the use of the extended Euclidean algorithm using the recursive
method.
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extendedGcd :: Integer -> Integer -> (Integer,Integer)
extendedGcd a b

| divides high low = (0,1)
| otherwise = (y’,x’ - y’*(quot high low))
where high = a

low = b
(x’,y’) = extendedGcd low (mod high low)

The extendedGcdA() function [2, p. 278] computes all of the solutions x′, y′, given an a and b, for the equation

ax+ by = gcd(a, b)

such that x′ is greater than the x in the solution (x, y) given by the extended Euclidean algorithm for a and b,
which is taken to be the “starting point” (Note this difference from the extendedGcdB function). There are an
infinite number of such solutions, and they are created based on the fact that if x0, y0 is a solution to the above
equation, then so are all x, y such that

x = x0 +m
b

gcd(a, b)
and y = y0 −m

a

gcd(a, b)

where m ranges over the integers.

extendedGcdA :: Integer -> Integer -> [(Integer,Integer)]
extendedGcdA a b = result:[ (x0 + m*bOverGCD,y0 - m*aOverGCD) | m <- [1..] ]

where result = extendedGcd a b
x0 = fst result
y0 = snd result
theGCD = gcd a b
bOverGCD = toIntegerFromFractionalInteger (fromInteger b / fromInteger theGCD)
aOverGCD = toIntegerFromFractionalInteger (fromInteger a / fromInteger theGCD)

The extendedGcdB() function [2, p. 278] computes all of the solutions x′, y′, given an a and b, for the equation

ax+ by = gcd(a, b)

such that y′ is greater than the y in the solution (x, y) given by the extended Euclidean algorithm for a and b, which
is taken to be the “starting point” (Note this difference from the extendedGcdA function). There are an infinite
number of such solutions, and they are created based on the fact that if x0, y0 is a solution to the above equation,
then so are all x, y such that

x = x0 +m
b

gcd(a, b)
and y = y0 −m

a

gcd(a, b)

where m ranges over the integers.

extendedGcdB :: Integer -> Integer -> [(Integer,Integer)]
extendedGcdB a b = result:[ (x0 + (-m)*bOverGCD,y0 - (-m)*aOverGCD) | m <- [1..] ]

where result = extendedGcd a b
x0 = fst result
y0 = snd result
theGCD = gcd a b
bOverGCD = toIntegerFromFractionalInteger (fromInteger b / fromInteger theGCD)
aOverGCD = toIntegerFromFractionalInteger (fromInteger a / fromInteger theGCD)

MODULE: RSA

The RSA module provides functionality for generating public and private keys and for encrypting/decrypting mes-
sages using the RSA algorithm.
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-- FILE: RSA.lhs
-- DATE CREATED: May 4, 2009
-- LAST UPDATED: May 8, 2009
-- AUTHOR: Lawrence Tyler Rush
-- me@tylerlogic.com
-- www.tylerlogic.com
-- VERSION: 1.0.0
module RSA
( RsaKey,
rsaDecrypt,
rsaEncrypt,
rsaExponent,
rsaKeyGenerator,
rsaModulus )

where

Imports of the RSA Module

This module uses the extended Euclidean algorithm of the Encryption module and also the similar function from
the Encryption module that produces, given a solution from the extended Euclidean algorithm, a second solution.
These functions are used by the RSA module only during key generation.

import Encryption ( extendedGcd , extendedGcdA )

This module uses the functions of the Data.Char module that convert characters to their integer values and visa
versa.

import Data.Char ( chr , ord )

Abstract Data Types of the RSA Module

To represent an RSA key, the RsaKey abstract data type is used and consists of a tuple of the Haskell type Integer.
As expected, the first Integer is the modulus of the RSA key and the second is the exponent of the RSA key.

data RsaKey = RK (Integer,Integer)

Class Instantiations of the RSA Module

This Show class instantiation converts an RsaKey to a string via using the show() function of tuples to convert the
tuple that represents the key to a string.

instance Show RsaKey where
show ( RK key ) = show key

Two RSA keys can be compared for equivalence via this Eq class instanstiation, which determines whether two RSA
keys are equal by determining if the tuples that are used to represent them are equal.

instance Eq RsaKey where
( RK key1 ) == ( RK key2 ) = key1 == key2

Exported Functions of the RSA Module

The rsaDecrypt() function decrypts a given ciphertext via the RSA decryption algorithm using the given RSA key
to convert to plain text. This function uses the padding scheme set forth by the pad()/unpad() functions. Note
that this implementation is quite slow with larger numbers, and that future implementations should implement the
use of modular exponentiation.

rsaDecrypt :: RsaKey -> [Integer] -> String
rsaDecrypt ( RK (n,d) ) ciphertext = unpad (map ((‘mod‘ n).(^d)) ciphertext)
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The rsaEncrypt() function encrypts a given text via the RSA encryption algorithm using the given RSA key to
generate the encrypted list of integers. This function uses the padding scheme set forth by the pad()/unpad()
functions. Note that like the decryption method above, this function should make use of modular exponentiation
in future implementations.

rsaEncrypt :: RsaKey -> String -> [Integer]
rsaEncrypt ( RK (n,e) ) text = map ((‘mod‘ n).(^e)) (pad text)

The rsaExponent() function returns the exponent of a given key.

rsaExponent :: RsaKey -> Integer
rsaExponent ( RK (n,e) ) = e

The rsaKeyGenerator() function creates a public and private key to use for RSA encryption and decryption,
returning both of them in a tuple where the first element is the public key and the second element is the private
key.

rsaKeyGenerator :: Integer -> Integer -> (RsaKey,RsaKey)
rsaKeyGenerator p q = (RK (n,e),RK (n,d))

where n = p*q
tot = (p-1)*(q-1)
e = 65537
d = (head.dropWhile (< 0).map fst) gcdE
gcdE = extendedGcdA e tot

The rsaModulus() function returns the modulus of a given key.

rsaModulus :: RsaKey -> Integer
rsaModulus ( RK (n,e) ) = n

Non-Exported Functions of the RSA Module

The pad() function is a padding scheme that simply takes a string of characters to their integer values. Yes, very
simple, but reversible nonetheless. Furture implemenations should create a better padding scheme.

pad :: String -> [Integer]
pad = map (toInteger.ord)

The unpad() function takes a list of integers and converts them to characters, thereby making a string. Note the
integers should be values that actually are the integer values of ACSII characters.

unpad :: [Integer] -> String
unpad = map (chr.fromInteger)
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